A Crank-Nicolson type minimization scheme for a hyperbolic free boundary problem
نویسندگان
چکیده
<p style='text-indent:20px;'>We consider a hyperbolic free boundary problem by means of minimizing time discretized functionals Crank-Nicolson type. The feature this functional is that it enjoys energy conservation in the absence boundaries, which an essential property for numerical calculations. existence and regularity minimizers shown estimate derived. These results are then used to show weak solution 1-dimensional setting.</p>
منابع مشابه
A Note on Crank-Nicolson Scheme for Burgers’ Equation
In this work we generate the numerical solutions of the Burgers’ equation by applying the Crank-Nicolson method directly to the Burgers’ equation, i.e., we do not use Hopf-Cole transformation to reduce Burgers’ equation into the linear heat equation. Absolute error of the present method is compared to the absolute error of the two existing methods for two test problems. The method is also analy...
متن کاملModified Crank-Nicolson Difference Schemes for Nonlocal Boundary Value Problem for the Schrِdinger Equation
The nonlocal boundary value problem for Schrödinger equation in a Hilbert space is considered. The second-order of accuracy r-modified Crank-Nicolson difference schemes for the approximate solutions of this nonlocal boundary value problem are presented. The stability of these difference schemes is established. A numerical method is proposed for solving a one-dimensional nonlocal boundary value ...
متن کاملCrank-Nicolson Difference Scheme for the Generalized Rosenau-Burgers Equation
In this paper, numerical solution for the generalized Rosenau-Burgers equation is considered and Crank-Nicolson finite difference scheme is proposed. Existence of the solutions for the difference scheme has been shown. Stability, convergence and priori error estimate of the scheme are proved. Numerical results demonstrate that the scheme is efficient and reliable. Keywords—Generalized Rosenau-B...
متن کاملA New Linearly Extrapolated Crank-nicolson Time-stepping Scheme for the Nse
We investigate the stability of a fully-implicit, linearly extrapolated Crank-Nicolson (CNLE) time-stepping scheme for finite element spatial discretization of the Navier-Stokes equations. Although presented in 1976 by Baker and applied and analyzed in various contexts since then, all known convergence estimates of CNLE require a time-step restriction. We propose a new linear extrapolation of t...
متن کاملA New Linearized Crank-Nicolson Mixed Element Scheme for the Extended Fisher-Kolmogorov Equation
We present a new mixed finite element method for solving the extended Fisher-Kolmogorov (EFK) equation. We first decompose the EFK equation as the two second-order equations, then deal with a second-order equation employing finite element method, and handle the other second-order equation using a new mixed finite element method. In the new mixed finite element method, the gradient ∇u belongs to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems-series B
سال: 2022
ISSN: ['1531-3492', '1553-524X']
DOI: https://doi.org/10.3934/dcdsb.2021153